You could soon be manufacturing your own drugs—thanks to 3D printing

first_img WARREN KNOWER/VOLARE PHOTOGRAPHY But Leroy Cronin, a chemist at the University of Glasgow in the United Kingdom, was looking for a stand-alone device. He wanted to broaden the ability of nonspecialists to make drugs and other chemicals, in essence “democratizing” chemistry in much the same way MP3 players did for music, by turning songs into a digital code that can be played by any device with the right software.Cronin’s first stab was a 2012 paper in Nature Chemistry in which he and his colleagues described something he called reactionware, 3D-printed chemical reaction vessels containing catalysts and other components needed to carry out specific reactions inside. By simply adding the starting compounds, Cronin’s team could synthesize a variety of simple compounds, including a ring-containing organic compound called ethylbenzene. At the time, however, Cronin says that critics doubted whether this approach would be useful for making more complex compounds, such as pharmaceuticals. “I like annoying people, scientifically,” he says. So, he pressed on. Sign up for our daily newsletter Get more great content like this delivered right to you! Country You could soon be manufacturing your own drugs—thanks to 3D printing Click to view the privacy policy. Required fields are indicated by an asterisk (*) By Robert ServiceJan. 18, 2018 , 2:50 PM Email A 3D-printed reactor makes medicines on demand. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Forget those long lines at the pharmacy: Someday soon, you might be making your own medicines at home. That’s because researchers have tailored a 3D printer to synthesize pharmaceuticals and other chemicals from simple, widely available starting compounds fed into a series of water bottle–size reactors. The work, they say, could digitize chemistry, allowing users to synthesize almost any compound anywhere in the world.“It could become a milestone paper, a really seminal paper,” says Fraser Stoddart, a chemist and chemistry Nobel laureate at Northwestern University in Evanston, Illinois, who was not involved with the work. “This is one of those articles that has to make [people] sit up and take notice.”3D printing already has a broad reach. It’s used to make everything from shoes and car parts to blood vessels and guns. In recent years, chemists in Australia and Europe have jumped into the fray, using the benchtop devices to create small-scale chemical reactors. But the reactors are designed to be integrated into manufacturing plants to improve their efficiency and safety, says Christian Hornung, a chemical engineer and 3D printing expert at CSIRO Manufacturing in Melbourne, Australia.   3D printing can now create chemical reactors designed to build specific medicines. Sergey S. Zalesskiy and Leroy Cronin It appears the effort payed off. In today’s issue of Science, Cronin and his colleagues report printing a series of interconnected reaction vessels that carry out four different chemical reactions involving 12 separate steps, from filtering to evaporating different solutions. By adding different reagents and solvents at the right times and in a precise order, they were able to convert simple, widely available starting compounds into a muscle relaxant called baclofen. And by designing reactionware to carry out different chemical reactions with different reagents, they produced other medicines, including an anticonvulsant and a drug to fight ulcers and acid reflux.So why not just buy a reactionware kit and scrap the printing? “This approach will allow the on-demand production of chemicals and drugs that are in short supply, hard to make at big facilities, and allow customization to tailor them to the application,” Cronin says. That could encourage the production of medicines used too rarely to justify conventional commercial production, as well as use in remote settings, such as on space missions, Hornung adds.Cronin says that removing organic chemists from the mix is another one of his goals. These workers need to be present for most synthesis steps, and run the risk of being exposed to dangerous reagents in the process. “It will allow organic chemists to focus on creating new molecules,” he says. It could also let biologists and other nonspecialists easily create short-lived compounds on demand for their research, including fluorescently labeled compounds.But 3D-printed reactionware could also lower the barriers to synthesizing dangerous drugs. That is “absolutely” a concern, Hornung says.But Cronin argues that it shouldn’t prevent beneficial uses that could save many lives. One of those is that distributed chemical production could quash drug counterfeiting, a huge global problem in which drug manufacturers replace active pharmaceutical ingredients with inert or even dangerous compounds. Counterfeit drugs are estimated to make up as much as 30% of medicines in some developing countries and cost legitimate pharmaceutical companies up to $200 billion per year. Distributed chemical manufacturing, Cronin argues, could ensure that drugs are made as advertised, because each reactionware setup would only be able to produce a single medicine.But it remains to be seen whether drug regulators will go along with a new way of making medicines. To do so, agencies like the U.S. Food and Drug Administration will need to rewrite their rules for validating the safety of medicines. Instead of signing off on the production facility and manufactured drug samples, regulators would have to validate that reactionware produces the desired medication. Cronin agrees it’s a hurdle. But he argues that future printed reactors could simply include a final module containing standard validation tests that produce a visual readout, much like a pregnancy test. “I think it’s manageable.”last_img read more

Read More »